Summary of the full cavitation model

Published

December 20, 2025

This post is a code-oriented restatement of the Full Cavitation Model from Singhal et al. (2002), with the core equations collected in one place.

The model is a homogeneous mixture (Equal-Velocity / Equal-Temperature; EVET) formulation:

Primary variables

  • \(\rho\) mixture density
  • \(\mathbf{V}\) mixture velocity
  • \(f\) vapor mass fraction (base model)
  • \(\alpha\) vapor volume fraction
  • \(R_e\), \(R_c\) evaporation and condensation source terms

When including a non-condensable gas (NCG):

  • \(f_v\) vapor mass fraction
  • \(f_g\) non-condensable gas mass fraction
  • \(\rho_g\) NCG density

Mixture closure (base model)

Mixture density is related to vapor mass fraction \(f\) by:

\[ \frac{1}{\rho}=\frac{f}{\rho_v}+\frac{1-f}{\rho_l} \]

Vapor volume fraction is then:

\[ \alpha \equiv f\,\frac{\rho}{\rho_v} \]

Vapor mass fraction transport

The vapor mass fraction is governed by:

\[ \frac{\partial}{\partial t}(\rho f)+\nabla\cdot(\rho\,\mathbf{V}\,f)=\nabla\cdot(\Gamma\,\nabla f)+R_e-R_c \]

Here \(\Gamma\) is an effective diffusion coefficient used for the scalar transport (typically a turbulence-model-based closure in CFD implementations).

Phase-change source terms (no NCG)

Evaporation (vapor generation) rate:

\[ R_e=C_e\,\frac{V_{ch}}{\sigma}\,\rho_l\,\rho_v\left[\frac{2}{3}\,\frac{(P_v-P)}{\rho_l}\right]^{1/2}(1-f) \]

Condensation rate:

\[ R_c=C_c\,\frac{V_{ch}}{\sigma}\,\rho_l\,\rho_l\left[\frac{2}{3}\,\frac{(P-P_v)}{\rho_l}\right]^{1/2}f \]

Where:

  • \(P\) is the local pressure
  • \(P_v\) is the phase-change threshold pressure (see turbulence section below)
  • \(\sigma\) is liquid-vapor surface tension
  • \(V_{ch}\) is a characteristic velocity

The authors recommend estimating \(V_{ch}\) from turbulent kinetic energy:

\[ V_{ch}=\sqrt{k} \]

Effect of turbulence (threshold pressure)

The phase-change threshold pressure is raised using turbulent pressure fluctuations:

\[ P'_{turb}=0.39\,\rho\,k \]

\[ P_v=\left(P_{sat}+\frac{P'_{turb}}{2}\right) \]

Extension: non-condensable gas (NCG)

With NCG, the mixture density relation becomes:

\[ \frac{1}{\rho}=\frac{f_v}{\rho_v}+\frac{f_g}{\rho_g}+\frac{1-f_v-f_g}{\rho_l} \]

NCG density is computed as:

\[ \rho_g=\frac{P}{R_{air}T} \]

Volume fractions are updated as:

\[ \alpha_g=f_g\,\frac{\rho}{\rho_g} \]

\[ \alpha_l=1-\alpha_v-\alpha_g \]

The paper then rewrites the phase-change rates (replacing \(V_{ch}\) with \(\sqrt{k}\)) as:

\[ R_e=C_e\,\frac{\sqrt{k}}{\sigma}\,\rho_l\,\rho_v\left[\frac{2}{3}\,\frac{(P_v-P)}{\rho_l}\right]^{1/2}\left(1-f_v-f_g\right) \]

and

\[ R_c= C_c\,\frac{\sqrt{k}}{\sigma}\,\rho_l\,\rho_l\left[\frac{2}{3}\,\frac{(P-P_v)}{\rho_l}\right]^{1/2}f_v \]

Note on an apparent inconsistency in Eq. (24)

There are a couple of error in Eq. (24) of the original paper. Eq (24) is supposed to be a restatement of Eq. (16) with \(V_{ch}\) is replaced with \(\sqrt{k}\). However, there are two mistakes.

Eq. (16)

\[ R_c=C_c\,\frac{V_{ch}}{\sigma}\,\rho_l\,\rho_l\left[\frac{2}{3}\,\frac{(P-P_v)}{\rho_l}\right]^{1/2}f_v \]

Eq. (24) as printed \[ R_c= {\color{red}{C_e}}\,\frac{\sqrt{k}}{\sigma}\,\rho_l\,\rho_l\left[\frac{2}{3}\,\frac{(P-P_v)}{\color{red}{\rho}}\right]^{1/2}f_v \]

Eq. (24) corrected: \[ R_c= C_c\,\frac{\sqrt{k}}{\sigma}\,\rho_l\,\rho_l\left[\frac{2}{3}\,\frac{(P-P_v)}{\rho_l}\right]^{1/2}f_v \]

References

Singhal, Ashok K., Mohan M. Athavale, Huiying Li, and Yong Jiang. 2002. “Mathematical Basis and Validation of the Full Cavitation Model.” Journal of Fluids Engineering 124 (3): 617–24.