This post is a code-oriented restatement of the Full Cavitation Model from Singhal et al. (2002), with the core equations collected in one place.
The model is a homogeneous mixture (Equal-Velocity / Equal-Temperature; EVET) formulation:
- One mixture momentum equation (variable density)
- One scalar transport equation for vapor mass fraction
- Algebraic mixture closure for density (and optionally non-condensable gas)
- Algebraic source terms for evaporation/condensation derived from a reduced Rayleigh-Plesset argument
Primary variables
- \(\rho\) mixture density
- \(\mathbf{V}\) mixture velocity
- \(f\) vapor mass fraction (base model)
- \(\alpha\) vapor volume fraction
- \(R_e\), \(R_c\) evaporation and condensation source terms
When including a non-condensable gas (NCG):
- \(f_v\) vapor mass fraction
- \(f_g\) non-condensable gas mass fraction
- \(\rho_g\) NCG density
Mixture closure (base model)
Mixture density is related to vapor mass fraction \(f\) by:
\[
\frac{1}{\rho}=\frac{f}{\rho_v}+\frac{1-f}{\rho_l}
\]
Vapor volume fraction is then:
\[
\alpha \equiv f\,\frac{\rho}{\rho_v}
\]
Vapor mass fraction transport
The vapor mass fraction is governed by:
\[
\frac{\partial}{\partial t}(\rho f)+\nabla\cdot(\rho\,\mathbf{V}\,f)=\nabla\cdot(\Gamma\,\nabla f)+R_e-R_c
\]
Here \(\Gamma\) is an effective diffusion coefficient used for the scalar transport (typically a turbulence-model-based closure in CFD implementations).
Phase-change source terms (no NCG)
Evaporation (vapor generation) rate:
\[
R_e=C_e\,\frac{V_{ch}}{\sigma}\,\rho_l\,\rho_v\left[\frac{2}{3}\,\frac{(P_v-P)}{\rho_l}\right]^{1/2}(1-f)
\]
Condensation rate:
\[
R_c=C_c\,\frac{V_{ch}}{\sigma}\,\rho_l\,\rho_l\left[\frac{2}{3}\,\frac{(P-P_v)}{\rho_l}\right]^{1/2}f
\]
Where:
- \(P\) is the local pressure
- \(P_v\) is the phase-change threshold pressure (see turbulence section below)
- \(\sigma\) is liquid-vapor surface tension
- \(V_{ch}\) is a characteristic velocity
The authors recommend estimating \(V_{ch}\) from turbulent kinetic energy:
\[
V_{ch}=\sqrt{k}
\]
Effect of turbulence (threshold pressure)
The phase-change threshold pressure is raised using turbulent pressure fluctuations:
\[
P'_{turb}=0.39\,\rho\,k
\]
\[
P_v=\left(P_{sat}+\frac{P'_{turb}}{2}\right)
\]
Extension: non-condensable gas (NCG)
With NCG, the mixture density relation becomes:
\[
\frac{1}{\rho}=\frac{f_v}{\rho_v}+\frac{f_g}{\rho_g}+\frac{1-f_v-f_g}{\rho_l}
\]
NCG density is computed as:
\[
\rho_g=\frac{P}{R_{air}T}
\]
Volume fractions are updated as:
\[
\alpha_g=f_g\,\frac{\rho}{\rho_g}
\]
\[
\alpha_l=1-\alpha_v-\alpha_g
\]
The paper then rewrites the phase-change rates (replacing \(V_{ch}\) with \(\sqrt{k}\)) as:
\[
R_e=C_e\,\frac{\sqrt{k}}{\sigma}\,\rho_l\,\rho_v\left[\frac{2}{3}\,\frac{(P_v-P)}{\rho_l}\right]^{1/2}\left(1-f_v-f_g\right)
\]
and
\[
R_c= C_c\,\frac{\sqrt{k}}{\sigma}\,\rho_l\,\rho_l\left[\frac{2}{3}\,\frac{(P-P_v)}{\rho_l}\right]^{1/2}f_v
\]
Note on an apparent inconsistency in Eq. (24)
There are a couple of error in Eq. (24) of the original paper. Eq (24) is supposed to be a restatement of Eq. (16) with \(V_{ch}\) is replaced with \(\sqrt{k}\). However, there are two mistakes.
Eq. (16)
\[
R_c=C_c\,\frac{V_{ch}}{\sigma}\,\rho_l\,\rho_l\left[\frac{2}{3}\,\frac{(P-P_v)}{\rho_l}\right]^{1/2}f_v
\]
Eq. (24) as printed \[
R_c= {\color{red}{C_e}}\,\frac{\sqrt{k}}{\sigma}\,\rho_l\,\rho_l\left[\frac{2}{3}\,\frac{(P-P_v)}{\color{red}{\rho}}\right]^{1/2}f_v
\]
Eq. (24) corrected: \[
R_c= C_c\,\frac{\sqrt{k}}{\sigma}\,\rho_l\,\rho_l\left[\frac{2}{3}\,\frac{(P-P_v)}{\rho_l}\right]^{1/2}f_v
\]
Recommended constants
\[
C_e=0.02\qquad C_c=0.01
\]
References
Singhal, Ashok K., Mohan M. Athavale, Huiying Li, and Yong Jiang. 2002. “Mathematical Basis and Validation of the Full Cavitation Model.” Journal of Fluids Engineering 124 (3): 617–24.